The JE-11P-1 is a $1: 1$ turns ratio line input transformer for high input impedance circuits (10K ohms and higher). It handles levels to +18 dBv . $\mathrm{Re}: 0.775 \mathrm{v} @ 20 \mathrm{~Hz}$. Below saturation, the 20 Hz THD is less than 0.045%. The high grade Nickel alloy core yields very low distortion even with source impedances up to several thousand ohms.

The bandwidth is 85 kHz with $<2 \%$ overshoot. The series losses are equivalent to 3700 ohms, so the level loss will be the same as a voltage divider made with a 3700 ohm series resistor and a shunt resistor equal to the load connected to the secondary. If the load is 10 K ohms, no RC network is required across the secondary. For 15 K ohm load, an RC network of 30 K ohms and 270 pF is required to damp the resonance. If the load is . 25 K or higher, an RC network of 13 K ohms and 620 pF is required. For other loads such as input circuits with shunt capacitance, our computer can derive optimum RC network values to minimize transient distortion and maximize bandwidth and generate revised response and impedance results.

The standard package has wire leads. Octal plug versions are available for all popular pin connections with or without the RC network built-in.

WIRE LEAD MODELS

JE-11P-1

Standard version
JE-11P-1D
Dual Faraday shield
JE-11P-1T
Center tapped secondary for phase splitter for bridged mono power amp applications

OCTAL PLUG MODELS

JE-11P-1AN

For Ampex equipment

JE-11P-1B

For Altec power amps

JE-11P-1BN

For Altec power amps, includes damping network
JE-11P-1QN
For QSC power amps, includes

damping network

JE-0900-9050
For BGW power amps, includes damping network

Actual oscilloscope photos were made from a Tektronix Model 453A (certified calibration).

This column with no load.
2 kHz Square Wave
$50 \mu \mathrm{~S} /$ division

$5 \mu \mathrm{~S} /$ division

The response and impedance curves were generated by a Hewlett/Packard System 45 Desktop Computer and a 9872A Plotter. The curves are the calculated results from an equivalent circuit model using the COMTRAN AC Circuit Analysis program. This method has made it possible to display the impedance curves up to 200 kHz showing the secondary resonance and RC network damping effect. Measured data from many protypes were used to derive the model to represent the average performance.

The distortion curves were generated by a Hewlett/Packard 9815A/9862A programmable calculator/plotter with a polynominal curve fit program. The distortion measurements employed a Sound Technology 1710A Analyzer. Verified accuracies are on the order of one pen-line width.

DISTORTION

SECONDARY SOURCE IMPEDANCE

FREQUENCY RESPONSE

PHASE RESPONSE

JE-11P-1 GENERAL CHARACTERISTICS

Turns Ratio
1:1
Impedance Ratio (15K/15K)
Primary Source Impedance

600 ohms or less
Secondary Load Resistor
Secondary RC Network
15 K ohms $\quad \geqslant 25 \mathrm{~K}$ ohms 30K ohms, 270pF 13 K ohms, 620 pF (most plug-in types have RC net built-in)
Faraday Shield Separate Lead
Magnetic Shield
30 dB , separate case lead (standard)
60dB, loctal plug-in types)
Maximum Input Level at $\mathbf{2 0 H z}$
+18 dBv (Re: 0.775 v)
PHYSICAL CHARACTERISTICS
Package
Mu-metal can (standard) or octal plug
Termination
Wire Leads (standard)
Octal plug types also available
Dimensions
1-1/8' diameter, 1-1/16' high (standard)
1-1/4" diameter, 2" high (octal plug)
Mounting (standard)
2 holes, $0.7^{\prime \prime}$ center-to-center/self-tapping screws supplied

TYPICAL PERFORMANCE	With 15K load	With $\geqslant 25 \mathrm{~K}$ load
Voltage Gain	-2dB	-0.05dB
Input Impedance $\begin{aligned} & \text { @ } 1 \mathrm{kHz} \\ & \\ & \\ & @ 10 \mathrm{kHz}\end{aligned}$	18K ohms 15.6K ohms	166 K ohm 20K ohms
Frequency Response @ $\mathbf{2 0 H z}$ (Re: 1 kHz) @ 20 kHz	$\begin{aligned} & -0.03 \mathrm{~dB} \\ & -0.25 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -0.03 \mathrm{~dB} \\ & -0.12 \mathrm{~dB} \end{aligned}$
Bandwidth @-3dB	85 kHz	85 kHz
Phase Response @ 20kHz	-23 deg	-24 deg
Rise Time (10\%-90\%)	$5 \mu \mathrm{~S}$	$4.8 \mu \mathrm{~S}$
Overshoot	<1\%	<2\%
Secondary Source Impedance 4300 ohms @ 1 kHz 4900 ohms @ 10 kHz		
$\begin{aligned} & \text { Total Harmonic Distortion (Bel } \\ & 0.045 \% \text { @ } 20 \mathrm{~Hz} \\ & 0.03 \% \text { @ } \\ & 0.013 \% \text { @ } 50 \mathrm{~Hz} \end{aligned}$	Saturation)	
$\begin{aligned} & \text { Input Level @ 1\% Saturation l } \\ & +17 \mathrm{dBv} @ 20 \mathrm{~Hz} \\ & +20 \mathrm{dBv} @ 30 \mathrm{~Hz} \\ & +26 \mathrm{dBv} @ 50 \mathrm{~Hz} \end{aligned}$	Re: 0.775v)	
Common-Mode Voltage (maxi $>200 \mathrm{v}$ peak		
$\begin{aligned} & \text { Common-Mode Rejection Rati } \\ & >75 \mathrm{~dB} @ 1 \mathrm{kHz} \\ & >55 \mathrm{~dB} @ 10 \mathrm{kHz} \end{aligned}$		

NOTE:
These specifications reflect recent improvements to the transformer, however the graphs show typical performance of earlier units. Therefore specifications and graphs may not always coincide.

Mounting Holes
Clearance for \#4 screw Lead Holes

Use 0.35" hole to clear grommet

MECHANICAL DESIGNERS:
Dimensions are approximate. Please have a transformer in hand when laying out panel cutouts.

