voltage-controlled resistor FETs designed for . . . Performance Curves NCB, NPA, NT, PSB See Section 4

- **Filters**
- Amplifier Gain Control
- Oscillator Amplitude Control

5 Siliconix

ABSOLUTE MAXIMUM RATING (25°C)

Gate-Drain or Gate-Source Voltage	15 V
Gate Current	mA
Total Device Dissipation at TA = 25°C	
(Derate at 2.0 mW/°C to 175°C)	mW
Storage Temperature Range55 to +17	5°C

ELECTRICAL CHARACTERISTICS (25°C unless otherwise noted)

-	lia	nnel VCR F	ETs	1	1	4					١		
Characteristic		VCR2N		VCR4N		VCR7N Min May		Unit	Test Conditions				
1 S IGSS		IGSS	Gate Reverse Current		-5		-0.2		-0.1	nA	VGS = -15 V, VDS = 0		
2 A 3 I	A	BVGSS	Gate-Source Breakdown Voltage	-15		-15		-15			IG = -1 μA, VDS = 0		
	I	VGS(off)	Gate-Source Cutoff Voltage	1.0	3.5	-3.5	-7	-2.5	-5	v	ID = 1 μA, VDS = 10 V		
4	C	rds(on)	Drain Source ON Resistance	20	60	200	600	4,000	8,000	Ω	VGS = 0, ID = 0	f = 1 kHz	
5		Cdgo	Drain-Gate Capacitance		7.5		3		1.5		VGD = -10 V, IS = 0	4 - 1 MH	
		C	Source-Gate Capacitance	1	7.5	-	3		1.5	pr	Vcs = -10 V. In = 0	- 1 MH2	
<u>6 1</u>	Y.	_∽sgo		N	CB	N	PA		IT	L			
6 P-Ch	Y [.] nar	nnel VCR F	ETs	N	C8	N	PA		ит Т				
	y. nar	nnel VCR F	ETs Gate Reverse Current	N	C8	N	PA	20	IT	nA	V _{GS} = 15 V, V _{DS} = 0		
P-Ch	Y. nar S T A	IGSS BVGSS	ETs Gate Reverso Current Gate-Source Breakdown Voltage	N	C8	N V(PA	20		nA	V _{GS} = 15 V, V _{DS} = 0 I _G = 1 µA, V _{DS} = 0		
P-Ch	ST AT	IGSS BVGSS VGS(off)	ETs Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage	N	C8	N V(15	PA	20		nA V	$V_{GS} = 15 V, V_{DS} = 0$ $I_G = 1 \mu A, V_{DS} = 0$ $I_D = -1 \mu A, V_{DS} = -10 V$		
P-Ch	nar S T A T I C	IGSS BVGSS VGS(off) rds(on)	ETs Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Drain-Source ON Resistance	N	C8	N 15 1.0 70	PA	20 5 200		nA V Ω	$V_{GS} = 15 V, V_{DS} = 0$ $I_G = 1 \mu A, V_{DS} = 0$ $I_D = -1 \mu A, V_{DS} = -10 V$ $V_{GS} = 0, I_D = 0$	f = 1 kHz	
6 Y	STATIC	IGSS BVGSS VGS(off) rds(on) Cdgo	ETs Gate Reverse Current Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Drain-Source ON Resistance Drain-Gate Capacitance	N		N 15 1.0 70	PA	20 5 200 25		nA V Ω	$V_{GS} = 15 V, V_{DS} = 0$ $I_G = 1 \mu A, V_{DS} = 0$ $I_D = -1 \mu A, V_{DS} = -10 V$ $V_{GS} = 0, I_D = 0$ $V_{GD} = 10 V, I_S = 0$	f = 1 kHz f = 1 MH	

Siliconix

The VCR FET has an a-c drain-source resistance, evaluated around VDS = 0, that is controlled by d-c bias voltage VGS applied to the high-impedance gate terminal. Minimum r_{ds} occurs when VGS = 0 and, as VGS approaches the pinch-off voltage, r_{ds} rapidly increases. Comparing Fig. 1 and 2, for VDS < \pm 0.1 volt and VGS = constant, the VCR FET has a bilateral characteristic with no offset voltage, just like a fixed resistor. However, when VDS > \pm 0.1 volts, the VCR FET characteristic has noticeable curvature.

This series of junction FETs is intended for applications where the drain-source voltage is a low-level a-c signal with no d-c component. Thus the FET operating point will swing symmetrically around $V_{DS} = 0$. In the first quadrant, signal distortion depends on what extent the FET output characteristic deviates from a straight line or linear relation. Besides the linearity problem in the third quadrant, when VGS is near zero and vds > 0.5 volt rms, the gate-channel junction will become forward biased and cause additional curvature in the characteristic. Also, whenever the gate becomes forward biased due to any combination of VGS and vds, it ceases to be a high-impedance control terminal for the VCR.

Fig. 3 presents a normalized plot of rDS versus normalized VGS where VGS(off) is defined as that value of VGS at ID/IDSS = 0.001. The dynamic range of rDS is shown as greater than 100:1. For best control of rDS the normalized VGS should lie between 0 and 0.8 VGS(off) because as

VGS approaches VGS(off), rDS increases very rapidly so that r_{ds} control becomes very critical and unit-to-unit matching is almost impossible. In Fig. 4, $r_{ds}(on)$ (drainsource resistance at VDS = VGS = 0) varies as an inverse function of VGS(off). In Fig. 5 r_{ds} has a typical 0.7%/°C temperature coefficient for P-channels which decreases as VGS approaches the zero t.c. point. N-channel devices have a typical 0.3%/°C t.c. Specific bias voltage to set operation at the zero t.c. point varies, as does VGS(off), from device to device."

L. Evans; "Biasing FETs for Zero DC Drift"; Electro Technology, August 1964.

FETs As Voltage-Controlled Resistors

INTRODUCTION

The Nature of VCRs

A voltage-controlled resistor (VCR) may be defined as a three-terminal variable resistor where the resistance value between two of the terminals is controlled by a voltage potential applied to the third.

A junction field-effect transistor (JFET) may be defined as a field-controlled majority carrier device where the conductance in the channel between the source and the drain is modulated by a transverse electric field. The field is controlled by a combination of gate-source bias voltage, V_{GS} , and the net drain-source voltage, V_{DS} .

Under certain operating conditions, the resistance of the drain-source channel is a function of the gate-source voltage alone and the JFET will behave as an almost pure ohmic resistor.⁽¹⁾ Maximum drain-source current, I_{DSS} , and minimum resistance, $r_{DS(on)}$, will exist when the gate-source voltage is equal to ze o volts ($V_{GS}=0$). If the gate voltage is increased (negatively for N-Channel JFETs and positively for P-Channel) the resistance will also increase. When the drain current is reduced to a point where the FET is no longer conductive, the maximum resistance is reached. The voltage at this point is referred to as the pinchoff or cutoff voltage and is symbolized by $V_{GS} = V_{GS}(off)$. Thus the device functions as a voltage-controlled resistor.

Figure 1 details typical operating characteristics of an N-Channel JFET. Most amplification or switching operations of FETs occur in the constant-current (saturated) region, shown as Region II. A close inspection of Region I (the unsaturated or pre-pinchoff area) reveals that the effective slope indicative of conductance across the channel from drain to source is different for each value of gate-source bias voltage.⁽²⁾ The slope is relatively constant over a range of applied drain voltages, so long as the gate voltage is also constant and the drain voltage is low.

7

Resistance Properties of FETs

The unique resistance-controlling properties of FETs can be deduced from Figure 2, which is an expanded-scale plot of the encircled area in the lower left-hand corner of Figure 1. The output characteristics all pass through the origin, near which they become almost straight lines so that the incremental value of channel resistance, r_{ds} , is essentially the same as that of d.c. resistance, r_{DS} , and is a function of V_{GS} .⁽³⁾

Figure 2 shows extension of the operating characteristics into the third quadrant for a typical N-Channel JFET. While such devices are normally operated with a positive drainsource voltage, small negative values of V_{DS} are possible. This is because the gate-channel PN junction must be slightly forward-biased before any significant amount of gate current flows. The slope of the V_{GS} bias line is equal to $\Delta I_D / \Delta V_{DS} =$ $1/r_{DS}$. This value is controlled by the amount of voltage applied to the gate. Minimum r_{DS} , usually expressed as $r_{DS(on)}$, occurs at $V_{GS} = 0$ and is dictated by the geometry of the FET. A device with a channel of small cross-sectional area will exhibit a high $r_{DS(on)}$ and a low I_{DSS} . Thus a FET with High I_{DSS} should be chosen where design requirements indicate the need for a low $r_{DS(on)}$ -

N-Channel JFET Output Characteristic Enlarged Around V_{DS} * 0 Figure 2

Figure 3 extends the r_{ds} characteristics of a FET to a comparison with the performance of 4 fixed resistors. Note the pronounced similarity between the two types of devices.

Incremental Drain-Source Resistance for Typical N-Channel FETs Figure 4

has been done in Figure 5. The resistance is normalized to its specific value at $V_{GS} = 0$ V. The dynamic range of r_{DS} is shown as greater than 100:1, although for best control of r_{DS} a range of 10:1 is normally used.

Siliconix offers a family of FETs specifically intended for use as voltage-controlled resistors. The devices are available in both N-Channel and P-Channel configurations (Figures 6A and 6B) and have $r_{DS(on)}$ values ranging from 20 Ω to 4,000 Ω (Figure 7).

Applications for VCRs

The FET is ideal for use as a voltage-controlled resistor in, applications requiring high reliability, minimum component size, and circuit simplicity. The FET VCR will conveniently replace numerous elements of conventional resistance control systems, such as servomotors, potentiometers, idler pulleys, and associated linkage. FET power consumption is minimal, packages are very small, and cost comparisons with conventional control schemes are most favorable.

A simple application of a FET VCR is shown in Figure 8, the circuit for a voltage divider attenuator. $^{(5)}$

 $v_{OUT} = \frac{V_{in} r_{DS}}{R + r_{DS}}$ (1)

It is assumed that the output voltage is not so large as to push the VCR out of the linear resistance region, and that the r_{DS} is not shunted by the load.

The lowest value which vour can assume is

The output voltage is

$$v_{OUT(min)} = \frac{V_{in} r_{DS(on)}}{R + r_{DS(on)}}$$
(2)

The highest value is

 $v_{OUT(max)} = v_{in}$ (3)

since rDS can be extremeley large.

A number of other FET VCR applications are shown in Figures 9-16.

Voltage-Tuned Filter Octave Range with Lowest Frequency at JFET VGS(off) and Tuned by R₂. Upper Frequency is Controlled by R₁ Figure 9

Electronic Gain Control Figure 10

Cascaded VCR Attenuator Figure 11

Wide Dynamic Range AGC Circuit. No Gain through FET with Distortion Proportional to Input Signal Level Figure 12

P-Channel VCR Photomultiplier Load. Required Low Photomultiplier Anode Current (Usually < 1 μA) Implies that VCR will Always Perform in Linear Region Near Origin Figure 15

Voltage Controlled Variable Gain Amplifier. The Tee Attenuator Provides for Optimum Dynamic Linear Range Attenuation Figure 16

Siliconix

Signal Distortion: Causes

Figure 17A repeats the FET output characteristic curves of Figure 2, to show that the bias lines bend down as V_{DS} increases in a positive direction toward the pinch-off voltage of the FET. The bending of the bias lines results in a change in r_{DS} , and hence the distortion encountered in VCR circuits; note that the distortion occurs in both the first and third quadrants. Distortion results because the channel depletion layer increases as V_{DS} reduces the drain current, so that a pinch-off condition is reached when $V_{DS} = V_{GS} - V_{GS(off)}$ -Figure 17B shows how the current has an opposite effect

N-Channel JFET Output Characteristic Enlarged Around V_{DS} = 0 Figure 17A

Figure 17B

in the third quadrant, rising negatively with an increasingly negative V_{DS} . This is due to the forward conduction of the gate-to-channel junction when the drain signal exceeds the negative gate bias voltage.

Reducing Signal Distortion

The majority of VCR applications require that signal distortion be kept to a minimum. Also, numerous applications require large signal handling capability. A simple feedback technique may be used to reduce distortion while permitting large signal handling capability; a small amount of drain signal is coupled to the gate through a resistor divider network, as shown in Figure 18.

The application of a part of the positive drain signal to the gate causes the channel depletion layer to decrease, with a corresponding increase in drain current. Increasing the drain current for a given drain voltage tends to linearize the V_{GS} bias curves. On the negative half-cycle, a small negative voltage is coupled to the gate to reduce the amount of drain-gate forward bias. This in turn reduces the drain current and linearizes the bias lines. Now the channel resistance is dependent on the DC gate control voltage and not on the drain signal, unless the $V_{DS} = V_{GS} - V_{GS(off)}$ locus is approached. Resistors R_2 and R_3 in Figure 18 couple the drain signal voltage-current characteristics are produced in both quadrants. The resistors must be sufficiently large to provide minimum loading to the circuit:

$$R_2 = R_3 \ge 10 [R_1 ||r_{ds}(max) ||R_L]$$
 (4)

Typically, 470K Ω resistors will work well for most applications. R₁ is selected so that the ratio of $r_{DS(on)} ||R_L$ to $[(r_{DS(on)} ||R_L) + R_1]$ gives the desired output voltage, or:

$$e_0 = e_1 \frac{r_{DS(on)} ||R_L|}{(r_{DS(on)} ||R_L| + R_1)}$$
 (5)

The feedback technique used in Figure 18 requires that the gate control voltage, V_{GG} , be twice as large as V_{GS} in Figure 17B for the same r_{DS} value. Use of a floating supply between the resistor junction and the FET gate will overcome this problem. The circuit is shown in Figure 19, and allows the gate control voltage to be the same value as that voltage used without a feedback circuit, while preserving the advantages to be gained through the feedback technique.

Appendix A to this Application Note is an analytical approximation of VCR FET distortion characteristics, both calculated and measured.

JFET Voltage-Controlled Resistors

Product Summary

Part Number	V _{GS(off)} Max (V)	V _{(BR)GSS} Min (V)	r _{DS(on)} Max (Ω)
VCR2N	-7	-25	60
VCR4N	-7	-25	600
VCR7N	-5	-25	8000

Features

- Continuous Voltage-Controlled Resistance
- High Off-Isolation
- High Input Impedance

Benefits

- Gain Ranging Capability/Wide Range Signal Attenuation
- No Circuit Interaction
- Simplified Drive

Applications

- Variable Gain Amplifiers
- Voltage Controlled Oscillator
- AGC

Description

The VCR2N/4N/7N JFET voltage controlled resistors have an ac drain-source resistance that is controlled by a dc bias voltage (V_{GS}) applied to their high impedance gate terminal. Minimum r_{DS} occurs when $V_{GS} = 0$ V. As V_{GS} approaches the pinch-off voltage, r_{DS} rapidly increases. This series of junction FETs is intended for applications where the drain-source voltage is a low-level ac signal with no dc component.

 $r_{DS} bias \approx \frac{\frac{r_{DS}(@V_{GS} = 0)}{1 - \left| \frac{V_{GS}}{V_{GS(off)}} \right|}$

Key to device performance is the predictable rDS change

versus V_{GS} bias where:

These n-channel devices feature $r_{DS(on)}$ ranging from 20 to 8000 Ω . All packages are hermetically sealed and may be processed per MIL-S-19500 (see Military Information).

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70293. Applications information may also be obtained via FaxBack, request document #70598.

VCR2N/4N/7N

Absolute Maximum Ratings^a

Gate-Source, Gate-Drain Voltage	
Gate Current	10 mA
Power Dissipation ^b	300 mW
Operating Junction Temperature Range	-55 to 175°C
Storage Temperature	65 to 200°C

Lead Temperature (1/16" from case for 10 sec.) 300°C

Notes:

- a. $T_A = 25^{\circ}C$ unless otherwise noted. b. Derate 2 mW/°C above 25°C.

Specifications^a

				Limits							
				VCR2N		VCR4N		VCR7N		1	
Parameter	Symbol	Test Conditions	Тур ^b	Min	Max	Min	Max	Min	Max	Unit	
Static											
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$l_{\rm G}$ = -1 μ A, V _{DS} = 0 V	-55	-25		-25		-25		v	
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 10 V, I _D = 1 μA		-3.5	-7	-3.5	-7	-2.5	-5	v	
Gate Reverse Current	I _{GSS}	$V_{GS} = -15 V, V_{DS} = 0 V$			-5		0.2		-0.1	nA	
	rDS(on)	$V_{GS} = 0 V, I_D = 10 mA$		20	60						
Drain-Source On-Resistance		V _{GS} = 0 V, I _D = 1 mA				200	600			Ω	
		V _{GS} = 0 V, 1 _D = 0.1 mA						4000	8000		
Gate-Source Forward Voltage	V _{GS(F)}	V _{DS} = 0 V, I _G = 1 mA	0.7							V	
Dynamic											
Drain-Source On-Resistance	rds(on)	$V_{GS} = 0 V, I_D = 0 mA$ f = 1 kHz		20	60	200	600	4000	8000	Ω	
Drain-Gate Capacitance	C _{dg}	$V_{GD} = -10 \text{ V}, I_S = 0 \text{ mA}$ f = 1 MHz			7.5		3		1.5	nF	
Source-Gate Capacitance	C _{sg}	V _{GS} = -10 V, I _D = 0 mA f = 1 kHz			7.5		3		1.5	P.	

Notes:

a. T_A = 25°C unless otherwise noted.
b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

NPA

NT

NCB

Applications

A simple application of a FET VCR is shown in Figure 1, the circuit for a voltage divider attenuator.

The output voltage is:

V

$$V_{OUT} = \frac{V_{IN} r_{DS}}{R + r_{DS}}$$

It is assumed that the output voltage is not so large as to push the VCR out of the linear resistance region, and that the r_{DS} is not shunted by the load.

The lowest value which VOUT can assume is:

$$OUT(min) = \frac{V_{IN} r_{DS(on)}}{R + r_{DS(on)}}$$

Since r_{DS} can be extremely large, the highest value is:

 $V_{OUT(max)} = V_{IN}$